skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Ferreira, Placid_M"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Double‐sided microfabrication process on an ultra‐thin silicon film has rarely been attempted due to the challenges in terms of the preparation and handling of a thin film in spite of its promising fabrication potentials. Such a process allows for doubling the thin film device density or providing dual functionalities for a thin film depending on whether the front and back sides of a thin film are processed identically or distinctively. Here, a novel double‐sided thin film processing strategy is introduced by realizing a dual coil patterned ultra‐thin silicon film that is working as an actuating or energy harvesting system. Experimentally, a dual coil patterned thin film enabled using the introduced approach shows remarkably enhanced device performance when compared with a single coil patterned counterpart. Furthermore, a multiphysics simulation model is developed and the resultant modeling data validate the experimentally measured performance enhancement. Finally, the structural durability of the thin film upon cyclic loading is tested and its diverse vibration modes are investigated. 
    more » « less